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RESPONSES TO USNRC REQUEST FOR ADDITIONAL INFORMATION, 
DATED DECEMBER t2, 1989 

DEFUELING COMPLETION REPORT AND RELATED REFEREtlCES 

Makeup Pump !A, Engineering Calculation 4550-3211-87-027 

QUESTION 1: 

Elaborate on the use of the compensation factor "S" that allowed for the 
effect of the lead shield around the Nal crystal . Has the value verified 
through measurement? 

RESPONSE : 

The method used to determine the amount of U02 in tanks. pipes, or 
housings Is Indirect. Ce-144 activity formed by fission Is related to 
the fuel quantity that produced the Ce-144. Similar chemistry ensures 
that fuel debris contains a commensurate amount of Ce-144, which was, In 
turn, measured by gamma ray spectrometers. Sodium Iodide detectors were 
used to reso1ve the 2185 keV maximum energy gamma ray from Pr-144, the 
daughter of Ce-144. 

Fuel determinations were performed as follows. First, sufficient 
detector shielding was used to limit dead time to 1-101. Second, 
measurements were made at a number of locations designed to couple to 
expected fuel deposition In pipes, tanks, or other housings. Third, the 
energy and efficiency calibrations were performed with a standard point 
source <I .e., Ce-144>. Finally, the conversions of data to Ce-144 
activity were made as follows: 

A. The unshielded sodium Iodide crystal efficiency was determined by 
comparing the observed emission rate, corrected for the detector 
shield, to the known source emission rate. The correction for 
shielding was the "S" factor: 

S • exp <x~> where: 
X a COUnter Shield ~hickneSS 
~. linear attenuation coefficrent 

B. Mlcrosh leldTI-1, ISOSHLD™. or QAD™ calculations were used to 
transport the 2185 keV gamma rays from an assumed distribution and 
amount of fuel through the walls of the p\pes, tanks, or housings . 
across the air gap, and through the detector shield to the 
crystal. The calculated results we re compared to the measured 
response . The ratios of measured to calculated were used to 
correct the assumed amount of fuel for the actual measurements. 

The technique of determining the unshielded detector efficiency 
simplifies transpor t of the gamma rays from the actual geomet ry to the 
detector crystal . Further. this allows the cal\b ratlons to be made u~der 
conditions of the measurements which require the sh reld . 
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Makeup Pump lA, Engineering Calculation 4550-3211-87-027 

QUESTION 2: 

ATTACMENT 
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<Page 7 of 97, paragraph 4. 12 . 3> Provide the basis for using only half 
of the available count to determine the count In the photopeak of 
Ce-144. Indicate If a similar method of analysis wa s used for 
measurements made with the HPGe detector . 

RESPONSE : 

Figure I Is a graph~cal depletion of data representing the last 
calibration measurement made In makeup pump room 'A' . The data was 
accumulated over more than 60 hours and clearly shows that the 2185 keV 
gam.na ray peak from Pr-144 Is ·the highest energy peak observed . 
Referring to Figure 1, the upper and lower shoulders of the peak are not 
equal. This Is normal for sodium Iodide detectors since the lower 
shoulder Includes the Compton continuum . Clearly, the signal to 
background ratio of the upper energy shoulder Is superior and, therefore, 
a more sensitive means of determining activities that approach background . 

Employing the upper half peak for the highest energy transition Is a 
standard technique for simple spectra that do not require computer 
unfolding. This Is certainly the case for makeup pump room 'A'. 
Efficiency calibrations were treated the same way with the region of 
Inte rest set for the upper half peak. HPGe detectors have much better 
energy resolution than sodium Iodide detectors. Therefore. the upper 
half peak technique would not be used with high resolution spectrometry. 

Make up Pump lA, Engineering Calculation 4550- 3211-87-027 

QUESTION 3: 

<Page 64 of 97> Explain the basis for using a non-stundard technique for 
calculation of the background correction rather than using the method 
described In Knoll <1979) p. 347 <Figure 10-2 4>. 

RESPONSE: 

The general background correction method described In KNOLL (1979> p. 347 
<see Figure 2> Is standard and a form Is built Into most modern 
multichannel analyzer operating systems. This method works well If peaks 
are present but can produce rapidly changing and even negative value s for 
spectra near background . The reason Is relatively large counting 
uncertainty for the 'A' and ' 8' values needed to define background 
according to KtlOLL . Other methods average three channel results around 
the 'A ' and 'B ' poi nt s to Improve resu lt s . The technique defined on 
page 64 of Calculation 4550-32 11 - 87-02 7 Improves on K~OLL's method as 
follows: A second regi on of i nte rest <ROt> Is taren above the 2185 keV 
peak . This second ROt Is adjusted for the same energy width as the 
2185 keV ROt . All data points in the regi on are used to produce the best 
linea r fit hy regression. The equation Is used to c~ lculate the ' A' and 
'8 ' values to determine the "best" background value . The technique Is 
outlined In Figure 3. 
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The two Important properties of this technique are: 
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A. The regressed slope and Intercept are much less uncertain than the 
single raw 'A' and 'B' values . 

B. Extending the equation to. the 2165 keV ROI wl II tend toward 
slightly lower slope which will tend to produce slightly higher net 
events. KNOLL's defines this as the peak area. 

The first property Improves the precision and the second property 
Increases the reported fuel quantity over simpler, more uncertain methods . 

Makeup Tank, Engineering Calculation 4550-3211-87-0~o 

QUESTION 4: 

Elaborate on the select ' Jn of geometries used to detPrmlne thP mavlmum 
amount of fuel present when no signal was detected. 

RESPONSE: 

As shown In Table 1, all ten spectral determinations made In the makeup 
tank room were positive. The analysis method employed here and In 
general transports gamma rays to measurement locations from all pipes. 
tanks, and housings In the room, hereafter termed deposit reylons. The 
measurement locations match places where uncollimated spectra 
determinations were made. 

As discussed In the response to Question #1, an assumed value of fuel for 
each deposit region was adju$ted to correspond to the entire measured 
gamma fluence rate . This provides Independent fuel estimates for the 
nine pipe and one tank deposit regions for the first measurement 
location. This Is repeated for all measurement locations; the results 
for the makeup tank calculation are shown In Table 2. 

Selection of the minimum value for each of the ten deposit regions will 
overstate the amount of fuel present . This Is because the measured gamma 
fluence from each location Is assumed to be due to deposits In only that 
region, whereas It Is actually from all deposit regions. The lowest 
value Is always produced by a close measurement location or a place where 
shielding Is minimum between assumed deposit point and measurement 
location. This conservative method was adopted because, frequently, 
fewer measurement locations were used than obvious deposit locations. 
Simultaneous solution of an underspeclfled set of equations Is possible 
but not performed here. 
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PLANNING STUDY INSTRUMENT SELECTION FOR RESIDUAL FUEL MEASUREMENTS 

QUESTION 5: 

<Appendix C. paragraph C. I, #4) Hhen alpha counting the bare RCS 
surfaces, was the film diluent factor applied to toth the maximum and 
minimum calculations and how was this factor derived? 

RESPONSE: 

The film diluent factor was used to account for possible absorption of 
alpha particles by corrosion film material that Is not related to UOz. 
The factor was derived by comparing results of the alpha probe 
measurements to radiochemical analysis of scraping from the same area. 
Since then, an lndependenc series of measurements were made which 
supercede the use of the film diluent factor. An average fuel density 
thickness of approximately 0 .7 ~g/cm2 <Reference I> was measured for 
lnconel surfaces. The measurement on lncone: covered approximately 100 
times more surface area than the determination on stainless steel 
referenced In the planning study. 

QUESTION 6: 

<Appendix C> Hhat Is the area of the alpha counter. Has the effect of 
dead time considered In the calculations? 

RESPONSE: 

An Eberllne PAC-6 was used to make the measurements referenced In the 
planning study. The sensitive area ~f the detector was approximately 60 
cm2. 

Counting systems used for film assays were adjusted to be totally 
Insensitive to Sr/Y-90 beta fields of approximately 1000 Rad/hr while 
maintaining alpha efficiencies of approximately 304 determined with a 
point Am-241 test source. 

Dead time was never a significant concern and was less than 11 for nearly 
all measurements . This can be verified by a process of estimation. The 
ORIGEN computer analysis <Reference 2> predicts 7 alpha particles per 
second per square centimeter for a fuel film density thickness of one 
microgram per square centimeter. Assuming an efficiency of 331, the 
calculated count rate at 1.0 ~g/cm2 film Is : 

Count Rate ... 7 ex x 60 cm2 x 
7m2; 

c = 140 CPS 
)o< 

One microsecond is a rea5onable pulse width produced by the proportional 
counter detector assembly. Therefore, lpproxlmately 10,000 CPS would be 
required for 11 dead time; a counting rate seldom If ever equaled The 
largest film thickness measured on a steam generator access plate wa s 
approximately 50 ~g/cm2 for a count rate of 7000 CPS. 
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QUESTION 7: 
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<Appendix c. paragraph C.4. 1. assumption 3> Elaborate on Assumption 
number 3 for the Germanium Detector <C .4. 1) that the collimated detector 
Is Insensitive to distance from the line source <Flux m approx 2 ~ RL>. 

RESPONSE: 

Assumption 3 of Paragraph C.4 . 1 is Incomplete. The expression for 
uncolllded gamma fluence In air Is: 

~y<p> • __ s__ l~an-1 g2 + tan-1 ~ <Reference 3> 
4wrJL r ,:J 

where: 
~y<p> 2 gamma fluence of point p 

S • }'s 
i · 1 + lz 

lf J1 .. Pz. then: 

~y(p) • 2•5 r 1 ~an-I Q 
The planning study was primarily a statement of Intention prior to the 
practice of measurement. The actual determinations of fuel content 
always accounted for aosorptlon thereby requiring a correct and more 
complete statement of gamma fluence transport . In any event, the 
assumption and Incorrectly stated approximation was never used. 
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QUESTION 8: 
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POST-DEFUELING SURVEY REPORT - REACTOR BUILDING BASEMENT 

<Pages 4 and 5> Provide additional details regarding the geometry and 
the detector calibration for the gamma spectrometry measurements used to 
estimate 1.2 kg of fuel In the reactor coolant drain tank <RCDT> 
discharge area. 

RESPONSE: 

Additiona l Information regarding measurement geometry and detector 
calibration are Included In Appendix A. 

~ESTION 9: 

<Page 6> Indicate the location of the drain system that runs from the 
tool decontamination facility on the 347-ft elevation to the reactor 
building basement. Indicate the basis for the assumption that the fuel 
particles from the tool decontamination facility would have been washed 
Into the reactor building basement sump. Provide the basis for the 
unstated ass~mptlon that additional fuel has not been added since the 
completion of the PDSR and Is currently not being added to the Inventory 
of the reactor building basement, as a result of the continued 
decontamination of tools on the 347-ft elevation . 

RESPONSE: 

The Reactor Building basement boundary was taken to Include all space 
below the 305' elevation with one partial exception. The exception Is 
the Reactor Building drain line that was used to transfer defuellng tool 
decontamination wash water to the basement. As stated In the 
Post-Defuellng Survey Report <PDSR> for the Reactor Building basement, a 
separate PDSR will be Issued for tnls drain line when the decontamination 
effort Is concluded and final drain measurements can be made . Interim 
measurements wll I be used to define the fuel content of this special 
drain line for the purposes of the Defuellng Completion Report . 

The discharge path from the tool decontamination enclosure located on thP 
347' elevation of the RV Is from the decon sink to a floor drain located 
within the decon enclosure. The discharge piping, from the floor drain. 
passes through the 347' elevation floor, turns nearly horizontal for 
about ten feet and then Is essentially vertical for about 55 feet to a 
long horizontal run unde r the 282' elevation basement floor. The pipe 
traverses from south to the north RB sump under the fl oJr . More thdn a 
dozen basement floor drains empty Into the line . 

To suppress airborne rontamlnatlon, the basement floor has been 
~alntalned under a few Inches of water . Discharges from the decon sink, 
typically about 200 gallons. effectively flush clean the upper short 
horizontal section bel ow the 347 ' elevation floor . However, the flooded 
lower section, asslsteo by pressure relief from the basement floor 
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drains, acts as a hydraulic buffer to reduce the linear velocity of the 
discharge. Settlement of deuse fuel particles Is el<pected a few feet 
downstream of the start of the horizontal run . 

Since the deposit location Is 
special means were employed . 
snake, were used to determine 
horizontal pipe run under the 
Increase that corresponded to 

not accessible for direct fuel assay, 
Small gamma detectors, strapped to a d•aln 
the Intensity of a significant part of the 
basement floor. Results show an Intensity 
the expected region of deb r is deposit. 

The measurer ents were modeled for three reasonable orientations of the 
detector, sna;,.e, and debris . The first placed the detector directly "on" 
a thin layer of debris . The second Is similar to the first except that 
the layer of debris Is thicker . The last model consi dered the detector 
to be displaced to one side with the steel sna~e shielding the detector. 
These models provide tot ~ ! U02 depos its of 0.27, 0. 48, and 5.1 kg, 
respectively. Therefore, the U02 deposi t of record 15 5. 1 ~g ! 1 0:~. 

The last paragraph on page 6 of the Reactor Build ing Basement POSR sta tes 
that the basement fuel content Is expected to remain static. As 
discussed above, the basement fuel content does not Include the RB drain 
line which serves as a hydraul ic buffer between the decon enclosure and 
the RB basement . This effectively precludes the additi on of residual 
fuel to the basement as a result of tool decontamination . Therefore, an 
Insignificant amount of fuel ha s been added to the RB basement since the 
completion of the PDSR . 
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.i 1111 ~aluc.'(llll the X l'"c:lll•tt'r, and the rorrrlo11on C"Vr/{ICttnl (r) ia 
plMcc-d tn the Y·r~aat .. r 

l.ine•r t:atim•tion. Wtth lltltll•llc-a at'nlmulated 10 rr111•trr• R0 
thruul(h Rb, • prrd1ch-d valur fur)' ldrnutrd j I can~ ulculated by 
II••)' I Ill( In • knuwn VIIIUt' fur .I and prt'lllllnll m IIil Stmllarly, • 
ttrrdlo.:trd vulur Curl tdrnutr-1 t Inn be calall•ted by ktyanar in a 
knuwn v•lur fury •nd pre~tallo 11 l!](I!) . 
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